来宝网Logo

热门词:生物显微镜 水质分析仪 微波消解 荧光定量PCR 电化学工作站 生物安全柜

AED
现在位置首页>行业专用>生命科学仪器>生命科学仪器>新型小动物活体成像仪器设备系统
新型小动物活体成像仪器设备系统
新型小动物活体成像仪器设备系统
  • 新型小动物活体成像仪器设备系统

新型小动物活体成像仪器设备系统

产品报价:询价

更新时间:2023/4/3 18:11:18

地:法国

牌:biospacelab

号:biospacelab

厂商性质: 生产型,

公司名称: 世联博研(北京)科技有限公司

产品关键词:

242
访问人数
0
累计评论


王荣 : (18618101725) (18618101725)

(联系我时,请说明是在来宝网上看到的,谢谢!)


产品详细信息

Biospace Lab 前身为Biospace measures 公司,由诺贝尔物理学奖得者乔治?夏帕克教授根据其在高能物理和粒子检测方面的研究发现,于1989年组建成立。乔治?夏帕克教授及其团队致力于生物影像工具的研究开发。公司成立以来,积极与医学、药学和其它领域的科研机构合作,力求满足用户对生物医学影像仪器的实际需求。目前,Biospace Lab已经发展了多种用于小型动物成像仪器,并拥有自己的专利技术。
Biospace Lsb致力于高性能临床前实验影像仪器的研制,成功开发出用于小型动物体内、体外和活动动态成像的成像系统。目前,该成像系统已经在世界知名药物公司和权威研究中心投入使用。
Biospace Lab的研发和生产总部位于法国巴黎,在欧洲、北美和亚洲均设有分公司。所有产品,包括其设计、生产、销售、安装和售后服务均符合ISO9001:2000认证规范。
Biospace Lab
光学活体成像工作原理:

使用Intensified CCD成像,即在原来CCD的基础上装上增强光信号的信号增强管。该装置包括:光电阴极、微通道板(microchannel plate)和荧光屏。
光源通过物镜聚焦后投射到光电阴极,因为光电效应,投射到光电阴极的光子转变为电子,让该电子通过一个强电场,使电子通过MCP后变成携带高能量的电子云,这些电子云投射到荧光屏便形成肉眼可见的光斑。这样,ICCD就能轻易捕捉到单一光子成像。
如右图所示。

Biospace Lab
光学活体成像优点:● 使用ICCD成像,有效提高信噪比,消除噪音对结果的干扰,在Photon成像系统中,相机的噪音减少到7 x 10-5 e-/像素 or或35 e-/s/cm2● 对实验动物进行实时观察,全界面清晰成像,无需理会光圈、焦距的使用,不必摸索拍摄曝光时间,结果肉眼随时可视,所得的数据更加真实可信。● 拥有Biospace Lab专利数据成像模型:Enhanced Counting Mode,使该系统动态检测范围灵敏度提高到5个数量级,达50 000 光子/s/mm2.● 利用系统兼容软件M3Vision?进行全自动数据分析


BiospaceLab的产品一共有五种:The Photon Imager、The Micro Imager、The Beta Imager、The Gamma Imager、Beta MicroProbe。除了覆盖一般要求的冷光及荧光成像外,我们还有更高端的放射性同位素成像和微探针系统,这在目前是暂时没有竞争对手的。
特点:采用第3代ICCD系统可将极微弱的电场信号放大100万倍,而背景值比传统冷CCD低100~1000倍,这是技术优势所在。

系统只要加入模块,无需改变结构,就可以增强或改进成像系统的功能,可根据实验情况逐步升级,让能效比最大化.升级潜力大,同时亦延长了仪器的折旧报废周期,让您的投资物有所值.





biospacelab ,BetaIMAGER小动物活体超快实时数字放射自显影成像系统
型号:biospacelab ,BetaIMAGER
价格:请致电:010-67529703

品牌:法国biospacelab

药理、毒理最佳选择,独家放送!超快实时定量放射自显影检测,应用于药理学、神经科学、分子成像、基因组学、分子生物学、医学、美容学、环境科学、生物化学等诸多科研领域。与感光胶片检测相比,氚检测将检测效率提高500倍:传统的感光胶片和磷成像方法需要花费几周的时间,而β成像系统能够将检测时间从几周缩短到几个小时
专利认证的成像系统,灵敏度极高氚的检测限为0.007 cpm/mm2,实时成像防止曝光不足或曝光过度,可在任意时间显示采集的图像直接Beta计数使实验结果重现性强,将重复实验的可能性降到最低通过光学变焦,空间分辨率可达60μm独特的专利技术确保多放射源同时成像,不同放射源之间无差异通用检测技术氚检测对20-25cm之间的样品最为适用可检测其他放射β射线的同位素(14C, 32P, 35S,33P, 125I)通过高分辨率和速度,检测与Gamma同位素(123I, 131I,99mTc, 201Tl, 111In, …)结合的电子检测与PET(正电子放射层扫描术)同位素结合的质子
在极短的时间内也可进行精确定量应用范围受体学整体分层载玻片上的组织分层其他组织分层薄层层析板电泳凝胶或感光胶片杂交膜体内分层后的体外成像(μSPECT,单光子发射计算机断层成像, μPET,正电子发射断层成像)


BetaIMAGER小动物活体超快实时数字放射自显影成像系统

一超快实时数字放射自显影法解决方案

*实时跟踪采集
*在几个小时内获得高精细的图像
*在几分钟内可看见第一个结果
*实时数字放射自显影
*独家和专利检测技术显示屏,实时累积计数
实时数字自显影,BetaIMAGER系统检测:
-所有常用的测试发射的放射性同位素:3H, 14C, 32P, 35S, 125I
-正电子发射/放射同位素
-具有二次β排放功能的多个发射γ放射性同位素:123I,131I,99mTc,201Tl,111In。
三大优势
1)在几分钟内可看见第一个结果
2)可见实时数据累计
3)避免曝光不足/过度
实时放射自显影法:D1受体的分布
氚标记的配体结合后在老鼠大脑纹状体

高灵敏度和快速的图像获取
1)直接β计数提供了无与伦比的性能:不管他们的能量如何,BetaIMAGER系统均可计算所有的发射粒子。
2)BetaIMAGER系统可达到比X射线敏感500倍的氚,比存储荧光屏敏感20倍
3)实验数量和实验动物可能减少,因为直接beta计算令结果更易预测
准确定量
1)精确定位和测试/beta发射放射性定量
2)先进的图形分析工具允许直接分析数字数据和准确定量
3)比1:10000现行动态范围更好的确保准确定量覆盖到可能的最大范围

主要优势
高低双向定量检测
样品浓度
单个数据采集
BetaIMAGERTM ?TRacer
turns autoradiography into a fast and easy routine
1)将放射自显影转变为一个快速简易的方法/路径
2)卓越的灵敏度可以在能量极低的氚放射下获得
3)TRacer系统探测氚水平达到0.007cpm/mm2

无与伦比的灵敏度降低你的数据采集时间
从数周缩短至数小时

检测超低水平结合的放射性标记的配体
-使用最少的结合放射性标记
-减少放射性浪费
-最小化实验经费
大样本和高分辨率于一体的系统
-200X250mm 最大化视野范围
-多个组织切片图像
-高达15个显微镜边
-或一个单独的更大的样本
-可选缩放模式
为较小的样本区域提供50个微空间分辨率

广泛的应用
高通量筛选
电泳凝胶和印迹
受体结合研究
原位杂交
全身显像
TLC(薄层色谱)板
BetaIMAGERTM ?dFine
高分辨率数字自显影解决方案
1)为部分安装在标准显微镜玻片(图像范围是24x32mm)
2)四个位置的样品台
3)自动顺序数据采集所有四个样品
4)可以用3H标记来实现的10微米的空间分辨率

优秀的多标记成像能力
1)在一次实验中复用的各种配位体和/或示踪剂
2)在放射性同位素和基于能量任和差异之间区分并精确地识别(2种放射性同位素),或衰减率(高达三种放射性同位素)
3)一种快速和灵敏的方法,用于同时确定在单个组织切片几个分子的分布

可能的能源组合基于双检测放射性同位素配对包括3H/14C,3H/35S,3H/32P或33P,
和基于衰减率多标签组合,99mTc/ 111In/18F.
建立大鼠心肌梗死的病理组织学基础模型
铟 - 111-DTPA(蓝色):检测范围内纤维化区域增加细胞外液。
99mTc-sestamibi的(绿色):检测周围均基于组织灌注水平的坏死缺血和可行的组织。
18FDG(红色):检测所有组织与活动糖酵解代谢





BetaIMAGER TRacer

BetaIMAGER DFine

技术

检测

气体雪崩室

闪烁箔

相机

强化CCD相机

强化CCD相机

性能



像素分辨率

5μn;m

1μn;m

空间分辨率

从50微米至400微米(根据同位素,变焦和样品)

10微米至25微米(根据同位素)

视场(FOV

15显微镜载玻片:200mm×250mm
6显微镜载玻片:120mmX160mm
2显微镜载玻片:75mm×100mm
半显微镜载玻片:25mm×33mm

24mmX32mm

线性

超过104 的动态范围内的线性响应

超过104 的动态范围内的线性响应

多标签能力

能量分离

2同位素,选择来自3个不同族的β发射体:低能量(3H);中等能量(14C,35S,33P,99mTc,…)和高能量(32P,18F,11C,...)


放射性衰变分离

高达3Beta发射同位素(包括PET)的具有足够不同的放射性衰变速率可以同时被成像,然后分离


串扰(典型值)

对于3H/14C分离5%

对于3H/14C分离1%

应用:



APPLICATION NOTES
PhotonIMAGER systems

Cerenkov Luminescence imaging on the PhotonIMAGER? system -
biodistribution of the beta emitting radiotracer 32P


Cerenkov imaging is shown to be a valid tool for complementing more commonly used BLI, FLI, SPECT and PET imaging modalities. This study successfully demonstrated how visualization of tumor onset/progression can be achieved by detecting Cerenkov luminescence from injected 32P radiolabel. The PhotonIMAGER? system is shown to be perfectly adapted to monitor Cerenkov Luminescence in vivo.
Download pdf




The importance of Real-Time acquisition for identifying the signal plateau in bioluminescent in vivo imaging

The emission of light following the reaction between Luciferase and it’s substrate Luciferin is the result of an enzymic reaction. The signal dynamics following following Luciferin injection in vivo will therefore be strongly dependant upon many factors; including temperature, pH, and location of Luciferase-expressing cells in vivo. This application note demonstrates the advantages of Real-Time signal acquisition for in vivo optical imaging.
Dowload pdf



Macrolens Module: detecting metastasis in mouse lung

It has been demonstrated in this study that it is possible to resolve metastasis in the lung ex vivo at higher magnification, even when they cannot be resolved in vivoduring whole body imaging.

The Macrolens module also allows precise localization of closely spaced signals making it possible to reliably quantify each one.
Download pdf



Real -Time monitoring of luminescent nanoprobe biodistribution

The biodistribution of luminescent nanoparticles can be controlled by altering their chemical surface and electrical charge. They can then be monitored in Real-Time using the PhotonIMAGER. This is of particular interest for pharmacological applications.
Download pdf



In Actio Module: Real-Time bioluminescence imaging in freely moving small animals

This study demonstrates the performance of a device developed for whole body imaging of small moving animals at high time resolution. The system comprises a camera for photon counting of bioluminescence signal and a video monitoring function to track the animals movements. The In Actio Module allows Bioluminescence imaging where anesthetics are suspected to cause physiological interference, such as studies monitoring tumor growth.
Download pdf


PhotonIMAGER?4-view module:
A device for simultaneous view of all the sides of animal body

The 4-View module is a device dedicated to the whole body imaging. Using thismodule reduces time needed to visualize allthe signals. This tool allows both bioluminescence and fluorescentimaging in real time. With this module problems which might appear due topositioning of the signal in the animal find their solution. The 4-View moduleis especially useful when signal appears on lateral sides and is not alwaysclearly visible with the standard module.
Download pdf



Leishmania Infantum infection monitoring by bioluminescence

This study shows that Bioluminescence imaging allows to obtain as much information as standard in vitro techniques concerning the evaluation of the parasite charge. Moreover, the PhotonIMAGER is well indicated for longterm monitoring of parasites plague without sacrificing the animals.
Download pdf