来宝网Logo

热门词:生物显微镜 水质分析仪 微波消解 荧光定量PCR 电化学工作站 生物安全柜

AED
现在位置首页>行业专用>生命科学仪器>生命科学仪器>荷兰Lumicks单细胞分子力学利器-力谱仪
荷兰Lumicks单细胞分子力学利器-力谱仪
荷兰Lumicks单细胞分子力学利器-力谱仪
  • 荷兰Lumicks单细胞分子力学利器-力谱仪

荷兰Lumicks单细胞分子力学利器-力谱仪

产品报价:询价

更新时间:2023/4/3 18:11:18

地:其他国家

牌:荷兰lumicks

号:AFS

厂商性质: 生产型,

公司名称: 世联博研(北京)科技有限公司

产品关键词:

770
访问人数
0
累计评论


王荣 : (18618101725) (18618101725)

(联系我时,请说明是在来宝网上看到的,谢谢!)


高度并行操纵单分子声学力谱(AFS)系统,荷兰Lumicks单分子声力谱仪(AFS)
型号:AFS

品牌:lumicks

了解单分子层面复杂的生物过程是预防和治疗癌症及其他疾病的关键,单分子声力谱仪作为即时可用的单分子检测仪器,实现了活体测量技术的突破以及分子水平上相互作用的成像。


AFS技术

声学力谱(AFS),是一种用于高度并行操纵单分子的方法。AFS单分子声力谱仪是第一款商业化的独立仪器,包括一个易于操作和测量的智能化专业显微镜。AFS技术是采用功能强大而成本低廉的芯片装置,能够高精度施加力同时对数千个的生物分子进行检测。


原理

AFS技术由玻璃微流控芯片和透明的压电变换器构成来产生共振声波。AFS芯片上的声波(超声波)可同时并行地在数千个生物分子(如DNA,RNA或蛋白质)施加亚皮牛顿(pn)到数百皮牛顿(pn)的力,同时具有亚毫秒的响应时间及固有稳定性。

AFS作为一个理想的工具在核酸蛋白、药物蛋白和抗原抗体层面上破译分子间相互作用的详情。AFS技术能够使科学家研究蛋白质的结构与功能相互关系,新的生物机制和细胞力学,也可用于研究和识别自由能图,动力学速率和在反应过程中的中间态。

AFS作为一个高度集成化的系统,包括倒置光学显微镜与软件、工作站及相关电子器件,用户界面友好,操控方便。


主要技术特点

  • 微流控芯片实验室技术 (Lab-on-Chip)

  • 单分子操纵

  • 高度并行

  • 亚毫秒响应时间

  • 固有稳定性

  • 安全和友好的用户界面

  • 高性价比


AFS的多功能设计

AFS作为一个高度灵活的单分子检测仪器,其显微镜平台给用户定制和个性化需求提供了多重选择。


  • 通过在200毫米、150毫米、75毫米和50毫米不同镜筒透镜安装距离来改变光学放大倍数

  • 可拆卸侧板便于对光学路径的简单调整

  • 标准25毫米网格便于外部安装射流功能的组件(如注射泵)

  • 特殊设计能够快速简单连接外部放大器

  • 专用芯片底座能够使射流和电子连接安全地接到AFS芯片、简单快速地固定或重新固定

  • 滑动装置用于准确定位和锁定物镜上的样品

  • 配装夹具以确保工作台上流体组件的固定,以便实现多种流动形式,如重力或注射器驱动的流动


AFS的应用

  • 动态力谱

  • 恒力测试

  • 力-距离曲线

  • 生物聚合物力学

  • 键断裂

  • 微流变学

  • 细胞力学

  • 水凝胶力学性能


AFS规格参数

AFS是一个真正的测量单分子的工具,包括一个专用的倒置光学显微镜,射流模块和电子组件,集成在一个小箱体内(300mm×375mm×200mm)。


AFS专用显微镜

单色LED照明

CFI消色差物镜(可升级)

电动Z轴物镜台(可升级)

USB 3.0 CMOS摄像头(可升级)

手动XY样品台

信号发生器(可升级)



AFS芯片

AFS系统包含三种AFS芯片,每个AFS芯片都会提前校准并且给出芯片的共振频率

  • 加载速率范围:10-4 PN / s到103 PN / s

  • AFS芯片尺寸:45 mm x 15 mm x 1.275 mm

  • 最大加载力:大于200 pN(4.5μm的聚苯乙烯微球,采用电压放大器)


全新的AFS芯片设计

我们将不断地改进AFS芯片。与AFS用户密切合作,提高芯片的性能、功能和可用性。


AFS工作站及软件(可升级)

AFS包括labview软件包和一个强大的工作站。AFS软件能够实时以纳米级分辨率并行测试数以千计的微球。


  • 在25赫兹实时并行三维跟踪60-300个微球

  • 在25赫兹实时并行二维跟踪300-1500个微球

  • 在25赫兹实时跟踪(X,Y)位置精度为2纳米

  • 在25赫兹实时跟踪(Z)位置精度为5纳米

  • 通过参照微球的差值跟踪进行(Z)方向漂移较正

  • 自动对照表校准


AFS放大器(可选)

AFS的功能可通过一个电压放大器扩展。电压增加,应用与生物分子的最大加载力相应增加。

放大器可以很容易通过后面板连接到AFS。AFS计算机已经预装所有相关的软件和驱动程序以适用于电压放大器。


Introduction


AFS?

AFS?

Acoustic Force Spectroscopy, or AFS?, is LUMICKS’ highly parallel single-molecule manipulation method capable of applying forces on thousands of biomolecules in parallel.

Visit product page


The essence of the AFS? technology lies in a glass microfluidic chip with two piezo elements that generate resonant acoustic waves (ultrasound). These resonant acoustic waves are used to exert forces on micrometer sized particles with a different density than the surrounding medium (e.g. a polystyrene microsphere or a living cell).

In the compact AFS? chip the acoustic waves are employed to exert forces from sub-pN to hundreds of pNs on thousands of biomolecules (such as DNA, RNA or proteins) or cells in parallel, with sub-millisecond response time and inherent stability.

AFS Explanation

Further reading:
Sitters et al. ‘Acoustic Force Spectroscopy’, Nature Methods (2015)

Applications

AFS? enables scientists to investigate the mechanical properties of biological systems by probing them via synthetic microspheres or by directly probing the system itself (e.g. a cell). Due to the planar nature of the acoustic waves, experiments can be performed in a highly parallel fashion. This makes AFS? an ideal tool to study a wide variety of biological systems, including, but not limited to: Antibody – antigen affinityprotein unfoldingcell manipulationmicrorheologylipid membrane interactions and DNA-protein interactions.

Rupture Force

Highly multiplexed antibody-antigen affinity characterization

Statistical analysis and high data throughput are of crucial importance to characterize the strength of antibody-antigen interactions. Due to the massive multiplexing capabilities of AFS? a large number of bonds can be probed in parallel, greatly reducing measurement times.

Measuring DNA extension curves in parallel

AFS? has the powerful and unique capability of performing single-molecule measurements in a highly parallel fashion. The importance of parallelity lies in the fact that many independent measurements are often needed to distinguish heterogeneous behavior and rare events from intrinsic stochasticity caused by thermal fluctuations.

In this example we perform a single-molecule experiment with 20 DNA molecules (8.4 kbps in length) in parallel. The ability of multiplexing mechanical measurements at the single-molecule level can be readily applied to different assays (e.g. RNA or proteins).

DNA Extension

DNA Polymerase

Measuring RNA polymerase activity

With its inherent multiplexing capabilities and force stability AFS? is the ideal tool to study rare DNA processing events on sub-second to hour timescales. RNA polymerase (RNAP) activity is typically of complex nature: Stochastically occurring elongation is frequently interrupted by pausing events of different nature.

Courtesy of Anatoly Arseniev, Georgii Pobegalov & Mikhail Khodorkovskii at Peter the Great St. Petersburg Polytechnic University, Russia

AFS? Stand-alone

AFS? Stand-alone is LUMICKS’ true turnkey single-molecule tool. It includes a dedicated inverted optical microscope and a powerful workstation with a LabView-based software package. With the AFS? Stand-alone you will be able to focus on your experiments right away, without the need for additional software or imaging tools.

Acoustic Forces

Range from 0 to 40 pN (4.5 μm diameter polystyrene microspheres)*
Static and dynamic force measurements with 14 bit resolution
Loading rates ranging from 10-4 pN/s to 103 pN/s

* Upgradable to 500 pN using external amplifier, includes bypass feature

Imaging

Monochromatic LED Illumination
CFI Achromat Air Objective (interchangeable)
CMOS Camera (upgradable)
Motorized Z Objective Stage
Manual XY Sample Stage

Workstation & Software

Powerful workstation including LabView-based open-source software capable of:
? Constant forces
? Dynamic force ramps
? User-defined time varying force profiles

? Real-time parallel 2D tracking of 1500 microspheres at 25 Hz
? Real-time parallel 3D tracking of 300 microspheres at 25 Hz
? Real-time position accuracy of 2 nm (XY) and 5 nm (Z) at 25 Hz