来宝网Logo

热门词:生物显微镜 水质分析仪 微波消解 荧光定量PCR 电化学工作站 生物安全柜

AED
现在位置首页>行业专用>生命科学仪器>细胞分析系统>SymCel代理,calScreener细胞能量代谢实时检测系统
SymCel代理,calScreener细胞能量代谢实时检测系统
SymCel代理,calScreener细胞能量代谢实时检测系统
  • SymCel代理,calScreener细胞能量代谢实时检测系统

SymCel代理,calScreener细胞能量代谢实时检测系统

产品报价:询价

更新时间:2023/4/3 18:11:18

地:其他国家

牌:瑞典SymCel

号:calScreener

厂商性质: 生产型,

公司名称: 世联博研(北京)科技有限公司

产品关键词:

323
访问人数
0
累计评论


王荣 : (18618101725) (18618101725)

(联系我时,请说明是在来宝网上看到的,谢谢!)


calScreener高灵敏微量热法无标记实时多通道细胞能量代谢监测系统 

calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
概述: 
利用活体细胞热流测量监测代谢变化是一个成熟完善的技术。瑞典symcel利用其微量热量检测分析专利技术,

发明了业界第一款多通道、高灵敏、无需标记的CalScreener细胞代谢和生物能量实时连续监测分析系统,集高灵敏度和优异的基线稳定性于一身。

该系统可以进行包括细胞代谢分析、氧呼吸测定、药物代谢分析、线粒体有氧代谢和糖酵解等功能的细胞代谢和生物能力所有类型的变化。
原理: 
从能量守恒定律讲,细胞化学反应是一定伴随热量的变化,利用实时监测、分析细胞热谱曲线的变化,实时、连续监测细胞发热功率和生物能量代谢产生热量的变化,并进行实时、连续分析。 
功能:
该系统一个为科研者提供在天然环境中进行细胞生物能量测量的无标记、实时检测分析工具,可实现对细胞、酵母、细菌生物能量与代谢的微量热进行实时连续数据监测分析, 监测分析代谢过程变化。提供重要的细胞热动力学数据.
对物理、化学或生物刺激引起生物过程预期的代谢变化都可进行有效的分析.
事实已证明微量热技术是一种灵敏而快速的生物鉴定方法,在癌症研究中可以用其来检测细胞的代谢混乱

  • 研究线粒体的功能和代谢机制:
  • 线粒体是细胞中极为重要的细胞器。在生命体能量代谢过程中,除一部分能量用于ATP 合成外,其余则以热的 
    形式释出。用CalScreener精密量热计可测量线粒体代谢过程中的热量输出,此方法对研究线粒体的功能和代谢机制具有十分重要的意义.
    ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物.
    武汉大学目前已经建立了一系列数学模型,用于线粒体热动力学参数的研究。目前已研究了呼吸链阻断剂[20 ] 、毒物[21 ] 、稀土[22 ]等对线粒体代谢影响的动力学和热力学特征。朱军成等[23 ] 研究了氯化汞对鲤鱼线粒体的影响,结果显示氯化汞在低浓度下促进线粒体代谢,伴有强烈的解偶联效应,而高浓度完全抑制,磷酸化系统失效。此研究说明氯化汞对线粒体的作用具有浓度依赖性。曹俊岭等[24 ]研究了人参不同提取部位对大鼠肝脏线粒体的影响,研究结果表明人参不同部位通过对代谢过程中多项指标的影响均可提高线粒体的能量利用率。此研究为微量热技术在中药的活性筛选中的应用提供了较好的佐证。

    2.监测细胞的代谢过程,研究产热量与细胞代谢之间的内在联系:
    细胞在生长过程中,营养物质氧化会产生能量,并通过代谢最终以热的形式释放出来。灵敏的微量热仪可以通过 
    监测细胞的代谢过程研究产热量与细胞代谢之间的内在联系。

    3.用于研究病理状态下细胞的代谢与正常细胞的异同, 用于疾病的辅助诊断

    —病变癌症细胞热功率大于正常细胞热功率.
    谭安民等[25] 研究正常细胞和HIV 1 病毒感染的细胞的微量热谱图,发现病毒感染细胞的代谢热明显高于正常细胞。刘欲文等[26 ] 研究了两种细胞分别被不同病毒感染,一种细胞感染后比未感染的代谢热高20 % ,提示为永久感染;而另一种细胞感染后代谢热明显增大,提示为杀细胞性感染,病毒大量繁殖 
    4.研究药物对细胞代谢的影响:
    曹俊岭等[27 ]用微量热法研究人参皂苷对小鼠脾淋巴细胞的影响,并用MTT 法对实验结果进行验证,两种实验结果基本一致,人参皂苷能增加脾淋巴细胞的生物热活性。目前利用微量热技术对肿瘤细胞等病变细胞的研究是这一领域的热点。 
    研究癌细胞的代谢产热及药物对其影响,对于研究癌细胞的生长代谢规律和抗癌药物筛选等均有重要意义。李莉等[28 ]研究了高温及抗癌药卡莫氟对卵巢癌细胞的影响。利用微量热法测定细胞代谢热的变化,并利用透射电镜观察其形态的变化。通过对宏观及微观两方面的研80 药物生物技术第17 卷第1 期 究表明高温和抗癌药均能使卵巢癌细胞凋亡和坏死,两者具有协同作用。周晖等[29 ] 利用微量热技术研究了高温对肝癌细胞系Bel 7402 代谢热的影响,通过荧光显微镜观察细胞形态学变化,并采用流式细胞术研究凋亡细胞的百分比。结果表明微量热技术可以与其他技术相结合,更有效的说明细胞生长代谢的状态。 
    5.研究细胞代谢与凋亡过程 
    微量热技术与透射电镜结合可以研究细胞代谢与凋亡过程,在测定过程中插入电极,如pH 电极和氧电极,可同时测定过程中pH 值和氧浓度的变化 
    6.细胞呼吸爆发的微量量热研究:
    微量量热法为细胞呼吸爆发的研究提供为精确定量测量方法,微量热分析可以绘制生物体生长热谱图,通过建立数学生长模型,可以得到生长速率常数k,最小抑菌浓度MIC,最大发热功率Pm,及总发热量Qtot等一系列热动力学参数,能定性和定量的说明问题。 
    7.使用微量量热法研究药物对细胞的抑制与保护作用
    8.使用微量量热法可检测细胞活性: 
    9.细胞不同代谢研究:细胞不同代谢类型的热化学研究, 鉴别静息细胞代谢的新方法 
    10.微量量热法测定细菌生长的热谱 
    11.微量量热法对细菌最低生长温度的研究 
    12. 无论是合成代谢还是分解代谢都能被检测分析 
    13.毒理性应用: CalScreener多通道细胞微量量热仪适用于最常见的实验将包括比较新型化合物与其他已知不同毒理标准的代谢反应.
    CalScreener多通道细胞微量量热仪适用于药物研发和代谢研究,并在细胞代谢总体状况监测中提供一个真正的表型反应。CalScreener还可进一步适用于毒理学试验,工艺开发和环境监测。数据获取的无标记原理使得CalScreener适用于更广的细胞科学应用领域。
    CalScreener多通道细胞微量量热仪可被用作不同生物系统的筛选工具。任何类型的培养细胞、酵母和培养细菌均可能使用。CaScreener直接描述测量代谢率的热功率,还可监测合成代谢过程与分解代谢过程。 
    CalScreener多通道细胞微量量热仪可用于多种代谢率变化的应用类型如化合物筛选、铅物质优化、生物利用度研究、细胞毒性研究、生物制药工艺优化和抗生素研发。 
    CalScreener多通道细胞微量量热仪可有效地监测由物理、化学和生物刺激引起的生物过程变化。代谢活性变化将引起细胞、组织或生物体的热耗散变化。根据对生物过程涉及到不同动力学行为的预期,下图是不同细胞过程在不同热功率随着时间推移而发生变化的理想案例。
    calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
    CalScreener多通道细胞微量量热仪是便捷使用先进的微量量热测量监测系统,本设备设计采用的calPlate微滴定板系统合适细胞生长和分析。
    系统亮点: 
    该CalScreener细胞微量热分析在生命科学领域中具有独特的优势: 
    1.微量量热法优势: 
    1.1 在测量中不用添加任何试剂,能直接监测生物体系所固有的代谢过程,不会引入干扰生物体系正常活动和代谢的因素;
    1.2 不需要制成透明清澈的溶液,可直接测量离体的组织和悬浮液; 
    1.3 在微量热实验之后,研究对象没有任何破坏,样品还可以做进一步的分析测试实验研究; 
    1.4 实时、动态、在线; 
    1.5 方法灵敏、准确、高通量、普适性好。 
    2.第一款专为细胞生物学而研制的多通道、纳瓦级 细胞微量量热系统,适用于任何类型的培养细胞、酵母和培养细菌.
    3. 性能卓越的温度控制和稳定性 
    CalScreener多通道细胞微量量热仪系统微量量热检测极限优于50 nW,培养细胞检出孔功率范围也在3~10uW
    4.独立于细胞形态的无标记检测 
    5. 可测量细胞代谢产生的热量,真正的表型应答测量 
    6.可以细胞代谢和生物能量热量进行实时连续性测量 
    当前许多现有的细胞生物分析技术依赖于“终点”测量,其中的数据为点数据,如报告基因检测。

    calScreener采集连续的数据流,以促进动力学行为研究,比如细胞生长或者凋亡。连续读出方式更容易找到感兴趣的时间点用来测量细胞活动。 
    7.无需通路和具体目标功能的先验知识 
    8.无需了解途径相互作用,便可同时测量协多元化合物的协同效应 
    主要应用领域 
    SymCel第一台专用于细胞分析而研制的微量热量计,不仅适合先进的细胞代谢研究,而且还应用于新药物探索研发,
    药物研发。 
    ●化合物筛选 
    ●先导[化合]物优化 
    ●弓形虫研究 
    ●生物制药工艺优化 
    ●抗生素的发展 
    ●环境监测

  • 药物研发
  • 1.1生物利用度—你的化合物能够影响活体细胞吗? 
    1.2靶目标确认 
    1.3命中验证;快速评估细胞作用影响 
    1.4在线毒性试验命中化合物快速过滤 
    1.5先导[化合]物优化

  • 蛋白生产
  • 2.1高产克隆鉴定 
    2.2培养条件优化

  • 毒理学
  • 3.1研究过程早期识别毒性事件

  • 基础研究
  • 4.1代谢监测 
    4.2增殖试验 
    4.3其他 
    calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
    系统应用原理 
    物理、化学或生物刺激引起生物过程预期的代谢变化使用微量量热法都可进行有效的分析。

    calPlate包括单个密封罩杯,用于保持培养细胞放置于一个恒温室装置中,且目标温度值设置精度在几千开尔文之内。 
    罩杯停靠在热通量检测传感器即热电偶之上。传感器连接到一个相比于细胞培养罩杯质量大许多的散热片中。

    所有产生的热量将被转移至散热片,从而引起热电偶传感器信号正比例于热流通量。

    因此,所测热量是独立于相关的模型系统或过程。我们拥有一个无标记、实时探测系统,可以应用于更广泛的生物系统检测领域。 
    calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
    (1) 量热法主要原理是测量由生物过程化学干预新陈代谢变化所引起的产热变, 以及其他产生热功率变化的诱导过程类型也可被监测,

    比如制药生产中蛋白过表达。calScreener是基于培养细胞的热反应测量,且不依赖于任一具体或繁琐的试验配方。

    由于无须添加底物或事先了解具体途径和靶目标,因此,将大幅地缩减实验结果的时间及获得实验数据的花费。 
    (2) calScreener产品的多样性和速度使得其可被用于更广的代谢试验应用范围。通过添加化学或生物化合物,

    calScreener可以检测到代谢率变化,并提供一个可直接测量细胞过程的方法,特别是无需了解代谢途径的先验知识

    或物质效应筛选的作用机理。 
    (3) calScreener是唯一适用于监测三维培养细胞反应和行为的新兴研究兴趣方向,无标记系统是完全独立的样本形态。

    基于三维培养的球形矩阵可用于研究细胞反应和生物能量学。


    calScreener不只限于上述这些应用领域,应用领域仅仅由科学家的想象力所局限。我们大力鼓励您能与我们讨论无标记

    细胞分析想法和必要条件。


    系统组成部分

  • 热电偶传感控制系统模块
  • calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统

  • 48孔标准板calplate样品恒温槽
  • calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
    calplate样品容器池是为保证calScreener系统性能正确而量身定制的耗材系列,作为样本容器,

    calPlate设计符合标准的微量滴定板格式。系统先进的标准化设计风格很适合细胞生长与热量测量的两者需求。

    calPlate系统不仅使用方便、节约成本,而且同时可最大限度地减少环境负荷。

    calplate样品容器池适合粘壁细胞测试如肌肉、脂肪、肾脏、卵巢、肝脏等粘壁细胞。

    48孔格式可同时对32个样本细胞以2×8位置进行测量,以便用作热量测量参考以提升测量灵敏度和性能。 
    calPlate包括单个密封罩杯,用于保持培养的细胞放置于一个恒温室装置中,且目标温度值设置精度在几千开尔文之内。


    3.CalView数据采集与分析软件 
    内部开发的应用软件具有用户友好图形界面,它允许用户指定每个试验孔的实时数据,

    并可同时观察所有试验过程的图形窗口,以及单项试验图的近视图。 
    calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
    数据采集图 
    calScreener细胞微量技术平台,细胞微量量热检测分析系统,无标记细胞代谢检测、生物能量实时监测分析系统
    数据分析图 
    主要技术品规


    检测原理

    对称差热通量量热法(Symmetric differential heat flux calorimetry)

    工作温度

    环境实验温度

    数据采样

    连续的实时读取

    数据采集温度

    37℃

    calPlate检测微孔板

    标准微孔板尺寸

    样品数

    48孔,同步进行32个细胞采样(32 simultaneous cell samples),16内参考点

    样品量

    200-300μL介质,贴壁细胞(推荐),悬浮细胞、酵母和细菌放入沉淀溶液中也可以

    分析的细胞类型

    本仪器最初研发目的是用于分析粘壁真核细胞,但也可用于所有悬浮或粘壁细胞类型包括细菌和酵母

    测量细胞反应类型

    细胞代谢的所有类型变化都可以被监测到。calScreener能够测量代谢率的组合变化,绝大多数细胞过程如细胞死亡和细胞增殖极大地影响到细胞代谢。 
    更微妙的过程如细胞信号转导也引起代谢更新变化。因此,使用量热技术方法探测重要的或微秒的细胞活动是一个公认的技术方法。 
    SymCel公司的calScreener产品设计是为细胞生物学研究领域提供一个高精度、高灵敏、易用的微量热计量系统。 它为科研学家和药物开发打开了一个新设立的研究机遇。

    微量热检测极限

    小于50nW(纳瓦),典型细胞热量输出范围是:3 – 10uW(微瓦),因为可以检测分析所有类型细胞微量热量. 
    Detection limit better than 50nW; well within the limits since a typical thermal output from 
    a culture of cells this size is in the range of 3 – 10uW

    测量单元 
    控制单元

    395(W)×370(H)×850(D) mm
    365(W)×153(H)×350(D) mm(维度尺寸包括电缆)(W×H×D; mm)

    平均的温度波动

    平均的温度波动小于±6μK

    温度漂移

    ±60μK

    calView数据采集软件操作系统

    Windows操作系统

    calResult数据分析包操作系统

    Windows操作系统

Monitor cell metabolism and cellular bioenergetics in real time with the label-free calScreener? from SymCel


calScreener

calScreener? is the first multi-channel calorimetric system specifically developed for cell based assays. Measurement of heat flow in living cells is a well established and proven technology to monitor changes in metabolic processes. calScreener? provides the researcher with a label-free detection tool with maximal versatility in assay type.
The real time continuous measurement provides important kinetic data for interpretation of cellular mechanisms and responses to treatment.
calScreener? is suited to drug development and metabolic research providing a true phenotype response where the total status of the cell metabolism is monitored.
calScreener? is furthersuitable for toxicology tests, process development and environmental monitoring.

Need to monitor 3D cell culture responses?

calScreener? is uniquely suited to the emerging interest in monitoring the response and behaviour of three dimensional cell cultures. The label-free system is completely independent of sample morphology. Cellular response and bioenergetics can be studied in real-time for spherical and matrix based three dimensional cultures.


calScreener?  Advantages:

  • First Calorimeter designed for cell biological work

  • Label-free assay
    Independent of cell morphology

  • Measures heat produced from cell metabolism
    True PHENOTYPE response measured

  • Real-Time continuous measurement

  • Prior knowledge of pathways and specific target function not needed

  • Multiple compounds can be tested simultaneously for synergetic  effects without knowledge of pathway interactions

  • Suitable for a wide range of applications



The versatility and speed makes calScreener? suitable for a wide range of metabolic assay applications. calScreener? detects changes in metabolic rate induced by addition of chemical- or biological compounds and provides a direct measurement of the resulting cellular processes. There is no need to have prior knowledge of metabolic pathways or mechanism of action to screen the effects of substances.

calScreener?  Key Features:

  • 48 well standard plate size adapted format

  • Cell type & cell morphology independent

  • Target independent

  • Medium throughput format


SymCel calScreener? Technology

The calScreener? system from SymCel provides researchers with a novel tool to measure the cellular  metabolic response in a native environment.

calScreener? is based on the measurement of thermogenic response in cultivated cells and is not dependent on any specific or cumbersome assay formulation. Since no addition of substrates or knowledge of the specific pathway or target is needed the time to results is greatly reduced as well as the cost for obtaining data.

The label-free principle of obtaining data makes calScreener? suitable for a wide range of cell-science applications. calScreener? can be used a screening tool applicable to different biological systems. Any types of cultivated cells as well as yeast or bacterial cultures are possible to use. calScreener? measures thermal power which directly describes the metabolic rate. Both anabolic and catabolic processes are monitored.

The calorimetry principle is based on measuring the heat production changes induced by changes in the metabolism by chemical intervention of biological processes. Also other types of induced processes such as over-expression of proteins for pharmaceutical production, creates changes in the thermal output and can thus be monitored.

calScreener? can be used for several types of applications where changes in metabolic rate are expected e.g. compound screening, lead substance optimization, bioavailability studies, cellular toxicity studies, biopharmaceutical process optimization, and antibiotics development.

calScreener? is a complete assay solution with integration all the way from cell culture consumables to the measurement step and finally data analysis software.

calScreener? – Label Free Cell Analysis

  • The first multi-channel calorimeter designed for cell-biological work.

  • Measures direct heat flow from cell metabolism

  • Label-free assay – no radioactivity, antibodies, fluorescence

  • Minimal assay development needed

  • Minimize time and consumables for experiments

  • Real-time continuous kinetic data

  • Adaptable for a large number of different Cell Biology Applications

The new calScreener? enables all scientist access to advanced calorimetric monitoring with ease of use. The instrument is designed to use the calPlate? microtiter plate system for cell growth and assays.

Features

  • Label free, real-time detection

  • 32 simultaneous cell samples

  • Detection limit better than 50 nW; well within the limits since a typical thermal output from a culture of cells this size is in the range of 3 – 10 mW.


  • calPlate? system

calPlate? system is a tailor-made series of consumables for calScreener? to ensure correct performance of the system. The design of the calPlate? conforms to the standard micro titer plate format as sample containers. The advanced modular design of the system is developed to suit both the needs of cell growth as well as the requirements of calorimetric measurement. The calPlate? system is both easy to use, cost effective and at the same time minimizing the environmental load. The plastic system is suitable for tests where adhesive cells, i.e. muscle, fat, kidney, ovary, liver etc, are used. The 48 well format allows the simultaneous measurement of 32 cell-samples as 2 x 8 positions are used as a calorimetric reference for increased sensitivity and performance.


  • calView? data collection software

CalViewAn in-house developed software with a user-friendly graphical interface. It allows the user to assign real-time data for each test well and view the progress of the all test graphs simultaneously as well as close-up view of individual test graphs. The software is designed to secure data traceability.



  • calResult? data analysis software

calResults? is based on the Origin Pro-software for scientific and engineering data analysis and data presentation. The data obtained in CalView is imported and analyzed in to the CalResults module for analysis. Customized methods can be developed and incorporated into the CalResult? application.


About the 'cal' Brand

The 'cal' part of our product name is an identity label derived from calorimetry -pointing to the origin of the technology. 'cal' is also part of the word calor -Latin for heat.

The calScreener?, calPlate?, calView? & calResults? are all trademarks of Symcel Sverige AB 2010.

calScreener?-FAQ


1. What types of cellular responses can be measured using calScreener??


All types of changes in the cellular metabolism can be monitored since calScreener
? gives a measurement of the combined changes in metabolic rate. A majority of cellular processes such as cell death and cell proliferation affects the cellular metabolism to a large degree. More subtle processes such as cell signaling also give rise to changes in metabolic turnover. The use of a calorimetric methodology to detect major, as well as, subtle cellular events is a well established methodology. The SymCel calScreener? is a high sensitivity, easy to use calorimeter designed for cell biological work, opening up a new set of opportunities for research scientists and drug development.


2. What are the advantages of using a label-free analysis over traditional analysis?


SymCel calScreener
? uses no label –no additives.
This results in faster assay development and cost savings since there are no reagents involved. The assay maintains the native environment of the cell and errors introduced by additions of antibodies or other reagents are avoided. The use of heat production measurement to monitor cell metabolism is also a non-destructive method facilitating further downstream analysis of cells for e.g. RNA expression levels. There is no need to have prior knowledge of a specific drug-target or the involved pathways or reaction mechanism.

3. What does ‘Real-Time Data’ mean for the analysis?


Many of the current available cell-biological analysis technologies depend on ‘end-point’ measurements where data is derived from a specific time point (e.g. reporter gene assays). calScreener
? collects a continuous data-stream facilitating research of kinetic behavior such as cell growth or apoptosis. The continuous read-out makes it easier to find the interesting time-points for measuring cellular events.


4. What cell types can be analyzed by the CalScreener??


The instrument was initially developed to analyze adherent eukaryotic cells but may be used for any cell type suspended or adherent, including bacterial cells and yeast.


5. What can SymCel technology do for toxicology?


Using a suitable cell-model calScreener
? is suitable for toxicology applications. The most common experiment would involve the comparison of the metabolic response of a novel compound with different know toxicological standards.

6. Is CalScreener? available as a commercial product?


calScreener
? is currently being tested by a select number of labs to obtain user feedback and peer-reviewed scientific publications. The goal is to be able to offer a fully commercial product by Q2 2013

Calorimetry a New Paradigm in Cell-based Assays

Measuring the metabolic activities in living organisms is a well established science. In 1784, Antoine Laurent Lavoisier and Pierre Simon de Laplace cleverly devised the first calorimetric device, using heat to measure chemical and physical changes. Calorimeters have evolved to become a modern tool for the advancement of science. Large volume single channel calorimeters have found wide spread applications in the industry, mainly in material, chemical and pharmaceutical companies.

old_calorimetry

SymCel is introducing the first calorimeter developed specifically for cell-based assays suitable for both advanced metabolic research as well as drug discovery and development applications.






Creating Solutions for You

calScreener? technology is valid for monitoring changes in biological processes caused by physical, chemical or biological stimuli. Changes in metabolic activity will cause changes in heat dissipated from the cell, tissue or organism.

Depending on the biological process involved different kinetic behaviors are anticipated. The graphs below are idealized examples of the different heat output over time from different cellular processes.

graph2

Calorimetry technology can be applied to



Drug development

  • Bioavailability – Are your compounds able to affect living cells?

  • Target validation

  • Hit validation; rapid assessment of effect on cells

  • Rapid filtering of hit compounds with in-built toxicity testing

  • Lead selection

Protein Production

  • Identification of High-producing Clones

  • Optimization of Culture Conditions

Toxicology

  • Identify toxicological events at early stage in the discovery process

Basic Research

  • Metabolic monitoring

  • Proliferation assays

  • Other

calScreener? is not limited to these few applications. The application areas are limited only by the imagination of the scientist. We strongly encourage you to discuss with us your label-free cell-assay ideas and requirements.

The calScreener? Principle

Biological processes caused by physical, chemical or biological stimuli in which metabolic changes are anticipated are all valid for the analysis.

The calPlate? containing the individual sealed cups holding the cell culture are placed in a thermostatic chamber set at the target temperature with a precision within thousands of a Kelvin.
The cups rest upon a heat-flux detecting sensor, the thermopile. The sensor is attached to a heat-sink with a large mass compared to the cell-culture cups. All heat produced is transferred to the heat-sink giving rise to a signal in the thermopile sensor proportional to the heat-flow.CalScreener_principle

The measured heat is thus independent of the model system or the process involved. We have a label free, real-time, detection system applicable to a wide range of biological applications

References

Below are some publication examples of biological processes and applications where heat measurements have been conducted using calorimetric equipment, including measurement of basic cellular responses such as cell proliferation, cell death (apoptosis) and cell signaling.

Apoptosis
Apoptotic processes are manifested by a typical heat pattern when DNA is fragmented

Bermudez, J., P. Backman, et al. (1992). “Microcalorimetric evaluation of the effects of methotrexate and 6-thioguanine on sensitive T-lymphoma cells and on a methotrexate-resistant subline.” Cell Biophys. 20(2-3): 111-23.
Wallen-?hman, M., P. L?nnbro, et al. (1993). “Antibody-induced apoptosis in a human leukemia cell line is energy dependent: thermochemical analysis of cellular metabolism.”Cancer Letters 75(2): 103-9.
Roig, T. and J. Bermudez (1995). “Microcalorimetric evaluation of the effect of combined chemotherapeutic drugs.” Biochim Biophys Acta. 1244(2-3): 283-90.
Bluthnerhassler, C., M. Karnebogen, et al. (1995). “Influence of Malignancy and Cyctostatic Treatment on Microcalorimetric Behavior of Urological Tissue Samples and Cell-Cultures.”Thermochimica Acta 251: 145-154.

Thermogenesis

B?ttcher, H. and P. Fürst (1996). “Microcalorimetric and biochemical investigations of thermogenesis and metabolic pathways in human white adipocytes.” Int J Obes Relat Metab Disord. 20(9): 874-81.
Hinz, W., B. Faller, et al. (1999). “Recombinant human uncoupling protein-3 increases thermogenesis in yeast cells.” FEBS Lett. 448(1): 57-61.

Growth

Feng, Y., S. F. Luo, et al. (1997). “Study on the thermosensitivity of a tumor cell by microcalorimetry.” Thermochimica Acta 303(2): 203-207.
Andlid, T., L. Blomberg, et al. (1999). “Characterization of Saccharomyces cerevisiae CBS 7764 isolated from rainbow trout intestine.” Systematic and Applied Microbiology 22(1): 145-155.
Barros, N., S. Feijoo, et al. (2001). “Interpretation of the metabolic enthalpy change, DHmet, calculated for microbial growth reactions in soils.” Journal of Thermal Analysis and Calorimetry 63(2): 577-588.
Dejean, L., O. Bunoust, et al. (2002). “Control of growth yield of yeast on respiratory substrate by mitochondrial content.” Thermochimica Acta 394(1-2): 113-121.